
IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55219 897

A Naïve Breadth First Search Approach

Incorporating Parallel Processing Technique For

Optimal Network Traversal

Laxmikant Revdikar
1
, Ayush Mittal

2
, Anuj Sharma

3
, Dr. Sunanda Gupta

4

Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India

1,2,3

Dept. of Computer Science & Engineering, Shri Mata Vaishno Devi University, Katra, India
4

Abstract: The authors have modied the existing breadth first search (BFS) technique by incorporating a parallel

processing feature to it. A multithreaded implementation of breadth-first search (BFS) of a graph using Open MP. the

results of our research reveal that implementing BFS using multiprocessor runs much faster than the standard BFS.

Keywords: Breadth-First Search, Parallel Programming, optimal Network Traversal Open MP.

I. INTRODUCTION

As we know that a graph can be used to represent any

network so using graph theory approaches we can traverse

the network, there are many graph traversal algorithms
 [1]

such as

1) Depth First Search

2) Breadth First-Search

3) A*

4) Dijkstra

5) Prim

6) Kruskal

7) Floyd Warshall

8) Bellman Ford

Here we will use BFS and change it run for multi-

processor systems.

A. BREADTH FIRST-SEARCH

BFS explores the vertices and edges of a graph, beginning

from a specified "starting vertex" that we'll call s. It

assigns each vertex a "level" number, which is the smallest

number of hops in the graph it takes to reach that vertex

from s. BFS begins by assigning s itself level 0. It first

visits all the "neighbors" of s, which are the vertices that

can be reached from s by following one edge, and assigns

them level 1.

Then it visits the neighbors of the level-1 vertices: some of

those neighbors might already be on level 0 or 1, but any

that haven't already been assigned a level get level 2. And

so on -- the so-far-unreached neighbors of level-2 vertices

get level 3, then 4, and so forth until there are no more

unreached
[2].

BFS uses FIFO queue to decide what vertices to visit next.

The queue starts out with only s on it, with level[s] =0.

Then the general step is to take the front vertex v from the

queue and visit all its neighbors. Any neighbor that hasn't

yet been visited is added to the back of the queue and

assigned a level one larger than LEVEL [v].

IT IS USEFUL IN

1) Social Media
[3]

2) Logistic

3) E-Commerce
[4]

4) Counter Terrorism

5) Fraud Detection
[5]

For example, in the following graph (Fig. 1.), we start

traversal from vertex 2. When we come to vertex 0, we

look for all adjacent vertices of it. 2 is also an adjacent

vertex of 0. If we don’t mark visited vertices, then 2 will

be processed again and it will become a non-terminating

process. A Breadth First Traversal of the following graph

is 2, 0, 3, 1.

Fig. 1. Example of Breadth First-Search

B. PARALLEL BREADTH FIRST-SEARCH

The idea of doing BFS in parallel is that, in principal, you

can process all the vertices on a single level at the same

time. That is, once you've found all the level-1 vertices,

you can do a parallel loop that explores from each of them

to find level-2 vertices. Thus, the parallel code will have

an important sequential loop over levels, starting at 0.

In the parallel code, it's possible that when you're

processing
[6]

 level i, two vertices v and w will both find

the same level-i+1 vertex x as a neighbor. This will cause

a data race when they both try to set level[x] =i+1, and

also when they each try to set parent[x] to themselves. But

if you're careful this is a "benign data race" -- it doesn't

actually cause any problem, because there's no

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55219 898

disagreement about what level[x] should be, and it doesn't

matter in the end whether parent[x] turns out to be v or w.

C. OPENMP

OpenMp
[7]

 is a set of compiler directives and library

routines for parallel application programs. It is a parallel

programming system that aims to be powerful and easy to

use, while at the same time allowing the programmer to

write high performance programs. Its initial focus was on

numerical applications involving loops written in Fortran

or C/C++, but it includes the necessary constructs to deal

with more kinds of parallel algorithms.

Irregular parallel algorithms involve sub computations

whose amount of work is not known in advance, and

hence the work can only be distributed at runtime.

Important subclasses include algorithms using task pools,

as well as speculative algorithms. We are concentrating on

the first type, although the problem and solutions we

present apply to other types as well. Examples for

irregular algorithms are search and sorting algorithms,

graph algorithms, and more involved applications like

volume rendering.

The expected graph (Fig. 2.) to be of sequential and

Parallel BFS is given below:-

Fig. 2. Expected Speed up using parallel and sequential

BFS

II. PURPOSE

Why BFS?

1) Least work/byte of the graph algorithms

2) Building blocks for many other graph algorithms

WHY PARALLEL BFS?

In past history when BFS was formed by scientist for

traversing it was meant for single processor but we have

opted for the parallel approach because nowadays its

rarely practised and also there are systems which have

multiple processor.

III. PROBLEM STATEMENT

We Have To Convert Sequential BFS Code into Parallel

BFS To Reduce Time Complexity In Traversing Of Graph

IV. GOAL & VISION

Our Goal Is To Reduce Time Complexity Of The

Traversing Of The Graph. Our Vision Is To Use Openmp

Api In Sequential BFS To Make It Parallel BFS.

V. SEQUENTIAL BFS

A. CODE SNIPPET

Fig. 3. Code Snippet of Sequential BFS in C++

B. EXPLANATION OF CODE

In the above code we have used a queue in which initially

we enqueue start node and then change its visited mode

and enqueue all its neighbour and then dequeue the start

node and now we process the front node of queue and put

all its neighbours into the queue and then dequeue it &

change its visited mode, we repeat this process until the

queue is empty. We created n input containing 99900

edges and then run the above code. The time taken to

traverse all the edges was 0.036000.

VI. PARALLEL BFS

A. CODE SNIPPET

Fig. 4. Code Snippet of Parallel BFS in C++

B. EXPLANATION OF CODE

In the parallel version of the BFS we have taken two array,

current array and next array. Current array stores the nodes

which are processing and the neighbours of all those nodes

which have not been visited are kept in next array when

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55219 899

we have visited all nodes of current array then we swap

current array and next array and this keeps going on until

the no. Of nodes in next array becomes zero and we have

kept the section critical where the threads insert the value

of nodes into the next array in critical section only one

thread at a time will be able to enter that region, so it will

prevent overwriting of same values by different threads

thus maintaining the synchronization.

We created n input containing 99900 edges and then run

the above code and the time taken to traverse the network

was 0.01900.

VII. TESTING

Now we have used a same parallel code with different no.

Threads for same input. Following is the graph

representing time taken vs. No. Of threads

Fig. 5. Plotted Graph of Proposed Parallel BFS

VIII. CONCLUSION

We have studied about graph traversal algorithms one of

them is BFS that is breadth first search algorithm and we

have implemented a parallel approach to the sequential

breadth first search. We experimented with some input

graphs and then came to the result that on parallel

processing with our proposed algorithm the graph is

traversed much faster. We have also studied that by using

different no. Of threads, different timings of traversing the

graph is noted. To achieve the above we have used

openmp with c++.

REFERENCES

[1]. Raynal, M. (2013). Basic Definitions and Network Traversal

Algorithms. Distributed Algorithms for Message-Passing Systems,

3-34. doi:10.1007/978-3-642-38123-2_1

[2]. Bundy, A., & Wallen, L. (1984). Breadth-First Search. Catalogue of
Artificial Intelligence Tools, 13-13. doi:10.1007/978-3-642-96868-

6_25

[3]. Fay, D. (2016). Predictive Partitioning for Efficient BFS Traversal
in Social Networks. Studies in Computational Intelligence Complex

Networks VII, 11-26. doi:10.1007/978-3-319-30569-1_2

[4]. Bishop, M. (1999). A Breadth-First Strategy for Mating Search.
Automated Deduction — CADE-16 Lecture Notes in Computer

Science, 359-373. doi:10.1007/3-540-48660-7_32

[5]. Fraud Detection. (2014). Fraud and Fraud Detection A Data
Analytics Approach, 7-15. doi:10.1002/9781118936764.ch2

[6]. Parallel Breadth-First Search on Distributed Memory Systems.

(2011). doi:10.2172/1050644
[7]. A Quick Reference to OpenMP. (2001). Parallel Programming in

OpenMP, 211-216. doi:10.1016/b978-155860671-5/50008-6.

